RELAYS - ELECTRICAL

How to use a relay:

1. Determine the current requirements of the device you want to control with the relay. The relay must be able to handle this current.
2. Choose a relay that can handle at least this amount of current. You may also need to consider other factors such as voltage and operating temperature.
3. Connect the coil of the relay to the control source. This is usually a low-voltage source, such as a battery or a switch.
4. Connect the load to the relay contacts. The load can be anything that requires control, such as a light or a motor.
5. Test the relay to ensure that it is working correctly.

What is a relay?
A relay is a device that allows you to control a high-current electrical circuit with a low-current control circuit. It is essentially an electromechanical switch that can be controlled without direct contact.

Why do I need a relay?
Relays are used to control high-current devices with low-current control signals. They can be used to switch on/off, control direction, or even prevent overheating.

How do I hook up a relay?
To hook up a relay, you need to connect the coil to the control source and the load to the relay contacts. The wiring diagram will show you how to connect the relay to your specific device.

How does a relay work?
Relays work by using an electromagnet to pull a set of contacts together. When the relay coil is energized, the magnet pulls the contacts closed, completing the circuit. When the coil is de-energized, the magnet releases the contacts, breaking the circuit.

RELAYS how they work & how to wire it up...
Many installers do not know how relays are used. Here is the bottom view of a standard 4-lead relay Switches Must have Relays!!

What is the difference between ignition (IGN) and the accessory (ACC) circuit?
- The IGN circuit can also be tapped into at the fuse box or in the stock radio harness. - The ACC circuit can also be tapped into in the wiring harness that goes to your car’s key switch. - Connect lead/pin 86 to the car’s IGN, or ACC circuit. These circuits can be connected to the relay coil. - When the ignition key is in the ‘RUN’ position, the IGN circuit will be powered. - When the ignition key is in the ‘ACC’ position, the ACC circuit will be powered. - The ACC circuit will be powered when the key is in the ‘ACC’ position, but it will not be powered when the key is in the ‘START’ position. When the key is turned, the power to the relay will also come on, as long as the key is in the ‘ACC’ position. - The ‘ACC’ position is powered when the key is in the ‘ACC’ position, but it is not powered when the key is in the ‘START’ position. When the key is turned, the power to the relay will also come on, as long as the key is in the ‘ACC’ position. - The ‘ACC’ position is powered when the key is in the ‘ACC’ position, but it is not powered when the key is in the ‘START’ position. When the key is turned, the power to the relay will also come on, as long as the key is in the ‘ACC’ position. - The ‘ACC’ position is powered when the key is in the ‘ACC’ position, but it is not powered when the key is in the ‘START’ position. When the key is turned, the power to the relay will also come on, as long as the key is in the ‘ACC’ position. - The ‘ACC’ position is powered when the key is in the ‘ACC’ position, but it is not powered when the key is in the ‘START’ position. When the key is turned, the power to the relay will also come on, as long as the key is in the ‘ACC’ position.